CATEGORICITY IN N₁ OF SENTENCES IN $L_{\omega,\omega}(Q)$

BV

SAHARON SHELAH

ABSTRACT

We investigate the categoricity and number of non-isomorphic models in N_1 of sentences in $L_{\omega_{1},\omega}(Q)$. Assuming $V = L$ we prove that no sentence in $L_{\omega_{1},\omega}(Q)$ has exactly one uncountable model. Thus partially answering problem 24 of a problem list by Friedman.

1. Introduction

After the solution of the problem of the categoricity-spectrum of first-order theories by Morley [9] (for countable theories) and Shelah [14] it is natural to look at categoricity of sentences in wider logics. Keisler [5] deals with categoricity of $\psi \in L_{\omega_{1},\omega}$ and, assuming the existence of appropriate N_1 homogeneous models, gets full results. Unfortunately this is not the general case. Marcus [8] proved the existence of a minimal countable model which contains an infinite set of elements indiscernible in a strong sense, and the author observed this implies there is $\psi \in L_{\omega_{\alpha}}$ categorical in every λ , but no model of which is $(L_{\omega_1,\omega}, \aleph_1)$ -homogeneous.

Several years ago the author investigated $\psi \in L_{\omega_{1},\omega}$ categorical in \aleph_1 , (which should be the easiest case) and got a picture quite similar to the one for first-order theories (the most significant result is mentioned in [8]). Unfortunately the existence of prime models over appropriate sets was not proven. Hence the categoricity was not proven. Also the amalgamation property was not proven. Later and independently Knight [7] obtained also some of those results.

A common device is that when your methods do not answer your questions, change your question. The following question (due to Baldwin) appeared in Friedman [3] (question 24):

Can a sentence $\psi \in L(Q)$ have exactly one uncountable model?

Received June 23, 1974

We answer negatively, assuming $V = L$, even for sentences in $L_{\omega_{\text{max}}}(\mathbf{O})$, by proving that if such ψ has $\langle 2^{x_1}$, but at least one, models of cardinality \aleph_1 , then it has a model of cardinality \aleph_2 .

The following example is interesting. Let $\psi^R \in L(O)$ be the sentence saying: < is a dense linear order with no first nor last element, each interval is uncountable, but $\{x: P(x)\}$ is a dense countable subset. By Baumgartner [1] it is consistent with $ZFC + 2^{N_0} = N_2$ that ψ^R is categorical in N_1 , but it is not even $(N_0, 1)$ -stable (see Def. 3.5)

We can replace the quantifier $(0x)$ by some stronger quantifiers without changing much. Let $M = (Qst P)\varphi(P)$ (P varies over one-place predicates) mean that the family ${P \subseteq |M|: M \models \varphi[P]}$ does not contain a subfamily **P**, of consistent with $ZFC + 2^{x_0} = N_2$ that ψ^R is categorical in N_1 , but it is not even bounded (i.e. $(\forall P)(\exists P_1) (P \subseteq |M| \land |P| \leq \aleph_0 \rightarrow P \subseteq P_1 \in P)$]. Notice $((Qz)\varphi(z)$ $= \neg (Q''P)(\forall z)(\varphi(z) \rightarrow P(z))$. By Shelah [16] th. 2.14, *L(Oⁿ)* is very similar to $L(Q)$ for models of power \aleph_1 , and in fact also $L_{\omega_1,\omega}(Q^{\alpha})$ is very similar to $L_{\omega_1,\omega}(Q)$. The results of Secs. 2, 3 and 4 generalize easily to $L_{\omega_0,\omega}(Q^{st})$, moreover by [16] clearly if $\psi \in L_{\omega_0,\omega}(Q^{st})$, $I(\aleph_1,\psi) < 2^{\aleph_1}$, $M = \psi, \|M\| = \aleph_1$ then e.g. for no $\bar{a} \in |M|$ and $\varphi \in L_{\omega_1,\omega}(Q^M)$ does $M \models (Q^{st} P) \varphi(P, \bar{a}) \wedge (Q^{st} P) \sqsupset \varphi(P, \bar{a}).$

But Sec. 5 does not generalize, as shown by the following $\psi \in L(O^{\prime\prime})$ which has exactly one (uncountable) model: ψ states that \langle is a dense order, with no first element, each initial segment is countable, but the model is not, and $\Box(Q^n P)$ ($\Box P$ does not have a first element). The model of φ is just $\langle n \cdot \omega_1, \langle \cdot \rangle$.

NOTATION. L will be a countable first-order language, *L(Q)* is L when we add to it the quantifier (Qx) meaning: "there exist uncountably many x's such that..." $L_{\omega_1,\omega}$ is L when we allow $\Lambda_{n<\omega}\varphi_n$, provided that $\Lambda_{n<\omega}\varphi_n$ has only finitely many free variables. $L_{\omega_1,\omega}(Q)$ is defined similarly. A fragment of $L_{\omega_1,\omega}(Q)$ (or $L_{\omega_1,\omega}$) is a *countable* subset, closed under: taking subformulas, changing names of free variables and applying the finite connectives, and the quantifiers ($\exists x$), ($\forall x$). Let φ , θ , be formulas, ψ a sentence, R, P predicates.

If $L \subseteq L^1$, $\psi \in L^1_{\omega_L,\omega}(Q)$ then $PC(\psi, L)$ is the class of L-reducts of models of ψ , and $I(\lambda, \psi, L)$ is the number of non-isomorphic models in $PC(\psi, L)$ of cardinality λ . If $L = L^1$ we write $I(\lambda, \psi)$ for $I(\lambda, \psi, L)$.

By $\varphi = \varphi(x_1 \cdots x_m) = \varphi(\bar{x})$ we mean every free variable of φ appears in \bar{x} . For $L^* \subseteq L_{\omega_1,\omega}(Q)$ the L^* -type \bar{a} realizes in M (a model) over $A \subseteq |M|$ (= the universe of M) is

$$
tp(\bar{a}, A, L^*, M) = \{ \varphi(\bar{x}, \bar{b}) : \varphi \in L^*, \ \bar{b} \in A, M \models \varphi [\bar{a}, \bar{b}] \}
$$

$$
(\bar{a} = \langle a_1 \cdots a_m \rangle \in A \text{ means } a_1 \cdots a_m \in A).
$$

If the length of \bar{a} , $l(\bar{a})$, is m, it is a L^* -m-type. If not said otherwise, $A = \phi$.

2. Pseudo-elementary classes

LEMMA 2.1. Let $L \subset L^1$, $\psi \in L^1_{\omega_0,\omega}(Q)$, and L^* a fragment of $L_{\omega_0,\omega}(Q)$. *Then :*

(A) If in some model M of ψ of cardinality $\geq \aleph_1$, uncountably many L^{*}-types *are realized* then $I(\mathbf{N}_1, \psi, L) = 2^{\mathbf{N}_1}$

(B) If for some model M of ψ , of cardinality $\geq \aleph_1$, there is a countable $A \subset |M|$, *such that in M over A uncountably many L*-types are realized then* $I(\mathbf{N}_1, \psi, L) = 2^{\mathbf{N}_1}$ provided that, $2^{\mathbf{N}_1} > 2^{\mathbf{N}_0}$.

PROOF.

(1) This is theorem 5.1 of [6].

(2) This follows easily from (l).

LEMMA 2.2. Let $L \subseteq L^1$, $\psi \in L^1_{\omega_{L},\omega}(Q)$, L^* a fragment of $L_{\omega_{L},\omega}(Q)$. Assume ${p:p \text{ is an } L^*$ -type and there is an uncountable model of ψ in which p is *realized} is uncountable. Then* $I(\mathbf{N}_1, \psi, L) \geq 2^{\mathbf{N}_\bullet}$.

PROOF. By Keisler [6], just as in Morley [10], it follows that the set of L*-types realized in uncountable models of ψ , is analytic and its cardinality is $\leq N_0$ or is 2ⁿ. So by the hypothesis the cardinality is 2ⁿ. By the downward Löwenheim-Skolem theorem (for $L^1_{\omega_1,\omega}(Q)$) each such type is realized in a model (of ψ) of cardinality \mathbf{N}_1 . So if $I(\mathbf{N}_1, \psi, L) < 2^{\mathbf{N}_0}$, then in some model of ψ of cardinality N_1 , at least N_1 types are realized, and we get a contradiction by $2.1(A).$

THEOREM 2.3. Let $L \subseteq L^1$, $\psi \in L^1_{\omega_1,\omega}(Q)$, $M\models \psi$, $||M|| = \aleph_1$.

(A) *If for every fragment* L*, *in M only countably many L*-types are realized,* then ψ *has a model N,* $||N|| = \mathbf{N}_1$ *in which only* \mathbf{N}_0 $L_{\omega_1,\omega}(Q)$ -types are realized.

(B) If for every fragment L^* , over every countable $A \subseteq |M|$ in M only *countably many L*-types are realized then* ψ *has a model N,* $||N|| = \aleph_1$, *in which only* \aleph_0 $L_{\omega_0,\omega}(Q)$ -types are realized over any countable $A \subseteq |M|$.

PROOF.

(A) Define by induction on $\alpha < \omega_1$, the fragment L^*_{α} of $L_{\omega_1,\omega}(Q)$:

130 S. SHELAH Israel J. Math.,

$$
L^* = L(Q),
$$

$$
L^* = \bigcup_{\beta < \alpha} L^* \text{ for limit } \alpha
$$

and $L_{\alpha+1}^{*}$ is the minimal fragment closed under *(Qx)* which contains

$$
L^*_{\alpha} \cup \{ \wedge tp(\bar{a},\phi,L^*_{\alpha},M): \ \bar{a} \in |M| \}.
$$

We can prove inductively that L_{α}^{*} is indeed countable: for $\alpha = 0$, α limit it is immediate, and for α a successor it follows by the hypothesis.

Now w.l.o.g, we can assume that $|M|$, the universe of M, is ω_1 . Expand M to the model

$$
M'=(M,<,E_0,\cdots,E_n,\cdots,F_0,\cdots,F_n,\cdots)_{n<\omega}
$$

where:

- (1) < is the usual order of the ordinals,
- (2) $E_n = \{(\alpha)^\wedge \bar{a}^\wedge \bar{b}: l(\bar{a})=l(\bar{b})=n; \bar{a}, \bar{b}\in|M|\}$;

 $tp(\bar{a}, \phi, L^*, M) = tp(\bar{b}, \phi, L^*, M)$

(3) F_n is an $n + 1$ -place function, and $F_n(\alpha, \bar{a}) \in \{m : m < \omega\}$ and $F_n(\alpha, \bar{a}) =$ $F_n(\alpha,\overline{b}) \Leftrightarrow E_n(\alpha,\overline{a},\overline{b}).$

(We can define F_n because the number of L^*_{α} -types realized in M is countable). It is easy to note that

(i) $E_n(\alpha, \bar{x}, \bar{y})$ is an equivalence relation (in M); it refines $E_n(\beta, \bar{x}, \bar{y})$ for $\beta < \alpha$; and it has $\leq \aleph_0$ equivalence classes; and \lt is an order with first element, 0, and $E_n(0, \bar{a}, \bar{b})$ iff the L*-types of \bar{a} and \bar{b} are equal.

(ii) If $N \models E_n(\alpha + 1, \overline{a}, \overline{b})$ then for every $c_1 \in N$ there is $c_2 \in N$ such that $N = E_{n+1}(\alpha, \bar{a}^{\wedge}(c_1), \bar{b}^{\wedge}(c_2))$. Moreover if for \mathbf{N}_1 c's $N = E_{n+1}(\alpha, \bar{a}^{\wedge}(c_1), \bar{a}^{\wedge}(c_1))$, then for \aleph_1 , c's $N\vert = E_{n+1}(\alpha, \overline{b}^{\wedge}(c), \overline{b}^{\wedge}(c_2)).$

Clearly (i) and (ii) can be "expressed" by sentences ψ_1, ψ_2 of $L_{\omega_1,\omega}(Q)$ respectively (for (i) we need the F_n 's).

By [5] there is a model N', such that: $||N'|| = N_1, N'$ is a model of $\psi \wedge \psi_1 \wedge \psi_2$, $\langle N' \rangle$ is not a well-ordering.

Clearly $N = \psi$, $||N|| = \mathbf{N}_1$, where N is the L¹-reduct of N'. So let $d_n \in |N'|$ $(n < \omega)$ be such that $N' = d_{n+1} < d_n$. Let us define E_n^* : for sequences \bar{a}, \bar{b} , from $|N'|$ of length *n*, $\bar{a}E_{n}^{+}\bar{b}$ holds *iff* for some *m* $N'|=E_n(d_m, \bar{a}, \bar{b})$.

As $N' = \psi_1 \wedge \psi_2$ it is easy to check that the analogs of (i) and (ii) holds for N'. So it is easy to prove that for every $\varphi(\bar{x}) \in L_{\omega_0,\omega}(Q)$, $\bar{a}E_n^* \bar{b} \Rightarrow N' = \varphi[\bar{a}] =$ $\varphi[\overline{b}]$ (by induction on φ). As

 $N' \models E_n(d_0, \bar{a}, \bar{b}) \Rightarrow \bar{a}E_n^* \bar{b} \Rightarrow tp(\bar{a}, \phi, L_{\omega_i, \omega}(Q), N) = tp(\bar{b}, \phi, L_{\omega_i, \omega}(Q), N)$

and $E_n(d_0, \bar{x}, \bar{y})$ has $\leq \aleph_0$ equivalence classes (in N') clearly $\{tp(\bar{a}, \phi, L_{\omega_1,\omega}(Q), N): \bar{a} \in N\}$ is countable, so N is the model we want.

(B) Essentially the same proof.

LEMMA 2.4. If $I(\mathbf{N}_1, \psi, L) \leq \mathbf{N}_0$, $M \models \psi$ then in M only countably many $L_{\omega_1,\omega}(Q)$ -types are realized.

PROOF. Let $\{M_i: i < \alpha\}$ be a maximal set of models of ψ of cardinality \aleph_1 , realizing only countably many $L_{\omega_1,\omega}(Q)$ -types, and with pairwise nonisomorphic L-reducts. By the hypothesis $I(\mathbf{N}_1, \psi, L) \leq \mathbf{N}_0$, so clearly $\alpha < \omega_1$. Suppose that in M uncountably many $L_{\omega_{1,\omega}}(Q)$ -types are realized and we shall get a contadiction.

Let L^{*} be a (countable) fragment of $L_{\omega_1,\omega}(Q)$ such that if $\bar{a}, \bar{b} \in |M_i|$ then

$$
tp(\bar{a},\phi,L^*,M_i)=tp(\bar{b},\phi,L^*,M_i) \Leftrightarrow tp(\bar{a},\phi,L_{\omega_1,\omega}(Q),M_i)\\ =tp(\bar{b},\phi,L_{\omega_1,\omega}(Q),M_i)
$$

(exists by the choice of the M_i 's).

Let L^* be a fragment of $L_{\omega_1,\omega}(Q)$ such that $L^* \subseteq L^*$ for $i < \alpha$ (exists as $\alpha < \omega_1$). As $I(\mathbf{N}_1, \psi, L) \leq \mathbf{N}_0$, by 2.1(A) in M only countably many L^{*}-types are realized. As uncountably many $L_{\omega_1,\omega}(Q)$ -types are realized, there are $\bar{a}, \bar{b} \in$ $|M|$, which realized the same L^{*}-types, but for some $\varphi(\bar{x}) \in L_{\omega_{1,\omega}}(Q)$ $M = \varphi[\bar{a}] = -\varphi(\bar{b}).$ Let

$$
\psi_1 = (\exists \bar{x})(\exists \bar{y})(\varphi(\bar{x}) \equiv \neg \varphi(\bar{y}) \ \wedge \ \wedge \ \wedge \ \wedge \ \theta(\bar{x}) \equiv \theta(\bar{y})).
$$

So clearly M_i = $\neg \psi_1$, M = ψ_1 , by the hypothesis on M and 2.3 there is a model N, $||N|| = N_1$, $N = \psi \wedge \psi_1$ and in N only countably many $L_{\omega_1, \omega}(Q)$ -types are realized. Clearly N contradicts the maximality of $\{M_i: i < \alpha\}$.

DEFINITION 2.1. *M* is (L^*, \aleph_0) -homogeneous if when $tp(\bar{a}, \phi, L^*, M)$ = $tp(\bar{b}, \phi, L^*, M)$, then for every $\bar{c} \in |M|$ there is $\bar{d} \in |M|$ such that

$$
tp\left(\bar{a} \land \bar{c}, \phi, L^*, M\right) = tp\left(b \land d, \phi, L^*, M\right).
$$

LEMMA 2.5. Let $L \subseteq L'$, M an L' -model, and in M only countably many $L_{\omega_0,\omega}(Q)$ -types are realized. Then (A) For some fragment L^* of $L_{\omega_0,\omega}(Q)$, M is (L^*, \aleph_0) -homogeneous.

(B) Moreover we can choose L^* so that for every $\bar{a} \in |M|$ there is $\varphi(\bar{x}) \in L^*$. *such that M* $=$ $\varphi[\bar{a}]$, *and* $\varphi(\bar{x})$ *is L*_{wie}(*Q*)-*complete*, *i.e.*, $\varphi(\bar{x})$ +*tp* $(\bar{a}, \phi, L_{\omega_1,\omega}(Q), M)$.

(C) The sentence $\psi_1 = \wedge {\psi : \psi \in L^*}, M = \psi}$ *is L_{urn}*(*O*)-complete.

PROOF. Easy.

3. Nice sentences and the amalgamation property

Here always $\psi \in L_{\omega_1,\omega}(Q)$, M and N are L-models.

DEFINITION 3.1. The sentence $\psi \in L_{\omega_1,\omega}(Q)$ is L^* -almost-nice $(L^*$ a fragment of $L_{\omega_{1},\omega}(Q)$ if

(1) ψ + (Qx)x = x, ψ has a model and is $L_{\omega_{1},\omega}(Q)$ -complete

(2) every model of ψ is (L^*, \aleph_0) -homogeneous

(3) moreover if $M \models \psi, \bar{a} \in |M|$ then for some $\varphi(\bar{x}) \in L^*$, $M \models \varphi[\bar{a}]$ and $\varphi(\bar{x})$ is $L_{\omega_1,\omega}(Q)$ -complete.

DEFINITION 3.2.

(A) The sentence ψ is almost nice if it is L^* -almost-nice for some L^* .

(B) The sentence ψ is nice if it is L-almost-nice and in (3) of Def. 3.1 the formula φ is atomic;

(C) $M \models ``\psi"$ if M is a (first-order) atomic model of $T(\psi) =$ $\{\psi_1: \psi_1 \in L, M \models \psi \Rightarrow M \models \psi_1\}.$ M is a non-standard model of ψ if $M \models \neg \psi$, $M \models ``\psi$ ".

(D) $M \models ``\varphi[\bar{a}]'' (\varphi \in L_{\omega_1,\omega}(Q))$ if $\psi \vdash (\forall \bar{x}) (\varphi(\bar{x}) = R(\bar{x})), R \in L, M \models R[\bar{a}],$ $M = "\psi"$ and ψ is nice.

REMARK. Notice that $T(\psi)$ is a set of first order sentences. If ψ is nice $\psi = \psi^* \wedge Qx(x = x)$ for some ψ^* a Scott-sentence of a (first-order) prime model in which each type is isolated by a predicate.

LEMMA 3.1.

(A) *For every almost-nice* ψ there is $L' \supseteq L$ and a nice $\psi' \in L'_{\omega_1,\omega}(Q)$ such *that*

(1) *for every* $\lambda I(\lambda, \psi) = I(\lambda, \psi')$

(2) *the L-reduct of any model of* ψ' *is a model of* ψ *, and every model of* ψ *can be uniquely expanded to a model of* ψ' *.*

(B) If ψ is nice, there is exactly one model M (up to isomorphism) such that $M = "w", ||M|| \leq N_0$ (this model is the prime model of $T(\psi)$).

(C) In Lemma 2.5(C) ψ_1 *is almost nice.*

(D) If M is a model of $T(\psi)$, where ψ is nice then:

 (a) Assume $N \leq M$. Then $N \models ``\psi"$ iff every $\bar{a} \in |N|$ realizes an L-isolated *type, i.e. there is* $\varphi \in L$ *, such that* $M \models \varphi[\bar{a}]$; $T(\psi)$ *,* $\varphi(\bar{x}) \models tp(\bar{a}, \varphi, L, M)$

(B) If $A \subseteq |M|$, $|A| \leq \aleph_0$, and every $\bar{a} \in A$ realizes an isolated L-type, then *there are* N_1 , N_2 *such that* N_2 *is a model of* $T(\psi)$, $A \subseteq |N_1|$, $N_1 < N_2$ $M < N_2$ *and* N_1 = " ψ ". If M is N_1 -saturated we can choose $N_2 = M$.

PROOF. Easy.

LEMMA 3.2. If $I(\mathbf{N}_1, \psi) \leq \mathbf{N}_0$, then there are almost-nice sentences ψ_n $n \leq \alpha \leq$ ω such that $\vdash [\psi \land (Q)x)(x = x)] \equiv \lor_{n \leq \alpha} \psi_n$.

PROOF. Let M_n $n < \alpha \leq \omega$ be the models of ψ of cardinality \aleph_1 . By Lemma 2.4 each M_n realizes only countably many $L_{\omega_1,\omega}(Q)$ -types. Hence by 2.5 and 3.1(C) there is an almost nice sentence ψ_n^1 such that $M_n = \psi_n^1$. Then $\psi_n = \psi \wedge \psi_n^1$ satisfies our requirements.

DEFINITION 3.3. Let ψ be nice, $M = \psi$, $N = \psi$.

(A) $M \le N$ if M is an elementary submodel of N.

(B) $M \lt^*N$ if $M \lt N$ and if $R(x, \bar{y}) \in L$, $\bar{a} \in |M|$, and M = " \Box (*Qx)R(x, a)*" then for no $c \in |N|-|M|$ does $N|=R[c,\bar{a}]$.

(C) $M <$ **N if $M <$ *N and if $R(x, \bar{y}) \in L$, $\bar{a} \in |M|$ and $M =$ " $(Qx)R(x\bar{a})$ " then for some $c \in |N|-|M|$, $N|=R[c,\bar{a}]$.

REMARK. Notice that if $M <$ **N then $M \neq N$ (if there is a nice ψ such that $M \models ``\psi$ ").

LEMMA 3.3.

(A) If ψ is nice, $M_i \models ``\psi"$ for $i < \omega_1$, $M_i < *M_{i+1}$ for $i < j$, $M_s = \bigcup_{i < \delta} M_i$ for *limit* δ , and $\{i: M_i < **M_{i+1}\}$ *has cardinality* N_1 then $\bigcup_{i<\omega} M_i = \psi$

(B) If ψ is nice, $M \models ``\psi"$, $\Vert M \Vert = \aleph_0$ then for some N, $M \lt^* N \models ``\psi"$

(C) The relations $\langle \cdot, \cdot \rangle^*$ are transitive, and if $M_0 \langle *M_1 \rangle^*$ are M_2 or M_0 < ** M_1 < * M_2 then M_0 < ** M_2 .

PROOF. Immediate.

DEFINITION 3.4. A nice sentence ψ has the λ -amalgamation property when: *if* N_i = " ψ " for $l = 0, 1, 2$, $N_0 < *N_i$, $||N_i|| \leq \lambda$ *then there are M, f₁, f₂ such that* N_0 < *M, M $=$ " ψ ", f_i is an embedding of N_i into M, f_i $\vert N_0 \vert$ = the identity and $M \upharpoonright$ Range $(f_i) < *M$ (for $l = 1, 2$).

LEMMA 3.4. *Suppose* $V = L$ or even $\Diamond_{\mathbf{M}_1}$. *If* ψ *is nice but does not have the* \aleph_0 *-amalgamation property then I(* \aleph_1, ψ *) = 2N,.*

PROOF. Trivially $I(\mathbf{N}_1, \psi) \leq 2^{\kappa_1}$. Let $\{S_i : i < \omega_1\}$ be a partition of ω_1 to \mathbf{N}_1 pairwise disjoint stationary sets (see e.g. [17]), by Jensen's diamond [4] there are for $\alpha < \omega_1$, a function $f_{\alpha}: \alpha \to \alpha$, and L-models $M_{\alpha}^0, M_{\alpha}^1$ with universe $\omega(1+\alpha)$ such that for every function $g: \omega_1 \rightarrow \omega_1$, and L-models M_0, M_1 with universe ω_1 ; { α : $\alpha \in S_i$, $g \nvert \alpha = f_\alpha$, $M_i \nvert \omega(1 + \alpha) = M_\alpha^{i,i}$ for $l = 0, 1$ } is stationary for every $i < \omega_1$. Let N_0, N_1, N_2 contradict the N_0 -amalgamation property and w.l.o.g. $N_0 <$ ** $N_1, N_0 <$ ** N_2 . Now for any set $S \subseteq \omega_1$ we define M_{α}^S ($\alpha < \omega_1$) by induction on α , such that $|M_{\alpha}^{s}| = \omega(1 + \alpha)$, $M_{\alpha}^{s}| = \omega''$, $\beta < \alpha \Rightarrow M_{\beta}^{s} < *M_{\alpha}^{s}$. For $\alpha = 0$, or α a limit ordinal there is no problem. If M_{α}^{s} is defined let g be an isomorphism from N_0 onto M_α^0 . If $M_\alpha^S = M_\alpha^i$, $\alpha \in S_i$, and $i \in S \Leftrightarrow l = 0$ choose $M_{\alpha+1}^S$ so that g (if $l = 0$) or $f_{\alpha}g$ (if $l = 1$) cannot be extended to an isomorphism from N_i onto $M_{\alpha+1}^s$. In any case choose $M_{\alpha+1}^s$ so that $|M_{\alpha+1}^s|=\omega(1+\alpha + 1)$, M_{α}^{S} < ** $M_{\alpha+1}^{S}$.

Let $M^s = \bigcup_{\alpha < \omega_1} M^s_{\alpha}$, so clearly $M^s = \psi$, $\|M^s\| = \aleph_1$. It is easy to see that $M^{S(1)} \cong M^{S(2)}$ implies that $\bigcup \{S_i : i \in S(1)\}, \bigcup \{S_i : i \in S(2)\}\$ are equal modulo the filter of closed unbounded subsets of ω_1 , hence $S(1) = S(2)$.

DEFINITION 3.5.

(A) A nice ψ is (λ , 1)-stable *if* $M\models " \psi", A \subseteq |M|, |A| \leq \lambda$, *implies* $|$ {*tp*(\bar{a} , *A*, *L*, *M*): $\bar{a} \in |M|$ }| $\leq \lambda$

(B) A nice ψ is λ -stable if $M \models ``\psi'', A \subseteq |M|, |A| \leq \lambda$ implies

 $|\{tp(\bar{a}, A, L, N): \bar{a} \in N, N| = "w", M < *N\}| \leq \lambda.$

LEMMA 3.5. *Assume* ψ *is nice and has the* N_0 *-amalgamation property,*

(A) ψ is \aleph_0 -stable iff ψ is $(\aleph_0, 1)$ -stable.

(B) *Assume* $2^{\mu_0} = \aleph_1$; then ψ has an \aleph_1 -model-homogeneous M of power \aleph_1 *(i.e.* if N_1 < *M, N_2 < *M, $||N_1|| = N_0$, *f* an isomorphism from N_1 onto N_2 , then *f can be extended to an automorphism of M).*

PROOF.

(A) The direction \Rightarrow is always true, and the direction \Leftarrow follows by the N_0 -amalgamation property.

(B) Easy.

4. Rank

Let $\psi \in L_{\omega_{1},\omega}(Q)$ be nice.

DEFINITION 4.1. Suppose ψ is nice, $M\models ``\psi$ ". For every L-type p with m variable over a finite subset of $|M|$ we define its rank $R^m(p) = R^m(p, M)$ as an ordinal, -1 , or ∞ , as follows: We define by induction when $R(p) \ge \alpha$, and then

$$
R(p) = -1 \Leftrightarrow R(p) \not\geq 0,
$$

$$
R(p) = \alpha \Leftrightarrow R(p) \geq \alpha \wedge R(p) \geq \alpha + 1,
$$

 $R(p) = \infty \Leftrightarrow (\forall \alpha)R(p) \ge \alpha$.

(A) $R(p) \ge 0$ if p is realized in M.

(B) $R(p) \ge \delta$ (for a limit ordinal δ) if for every $\alpha < \delta R(p) \ge \alpha$.

(C) $R(p) \ge \alpha + 1$ if the following conditions are satisfied

(a) there are $\varphi \in L$ and $\bar{a} \in |M|$ such that $R^m(p \cup {\varphi(\bar{x}, \bar{a})}) \ge \alpha$, $R^m(p \cup \{\exists \varphi(\bar{x}, \bar{a})\}) \geq \alpha$

(6) for every $\bar{a} \in |M|$ there is $P(\bar{x}, \bar{a})$ and $\bar{c} \in |M|$ $(l(\bar{x}) = l(\bar{c}) = m)$ such that $P(\bar{x}, \bar{a})$ + tp(\bar{c}, \bar{a}, L, M) (so $P(\bar{x}, \bar{a})$ is complete), $R^m(p \cup \{P(\bar{x}, \bar{a})\}) \ge \alpha$

(y) If $M \models ``\exists (Qy)P(y, \bar{a})"$ and $p \mid (\exists y)[\psi(y, \bar{x}, \bar{c}) \wedge P(y, \bar{a})]$ then for some $d \in |M|, M \models P[d, \bar{a}]$ and $R^m(p \cup \{\psi(d, \bar{x}, \bar{c})\}) \ge \alpha$.

REMARK. A natural ordering is defined among the possible ranks by stipulating $-1 < \alpha < \infty$ for any ordinal α .

DEFINITION 4.2. For any not necessarily finite p ,

$$
R^m(p) = \min\{R^m(q): q \subseteq p, |q| < \aleph_0\}
$$

LEMMA 4.1.

(A) $R^{m}(\varphi(\bar{x}, \bar{a}), M)$ *depends only on tp*(\bar{a}, φ, L, M).

(B) $p \nmid q$ implies $R^m(p) \leq R^m(q)$.

(C) $R^m(p) \ge \omega_1$ implies $R^m(p) = \infty$.

(D) If $M \lt^* N$, $N \models ``\psi", \quad M \models ``\psi", \quad \bar{b} \in |M|, \quad \bar{a} \in N, \quad \models \varphi[\bar{a}, \bar{b}],$ $R^{m}(tp(\bar{a}, |M|, L, N)) = R^{m}(\{\varphi(\bar{x}, \bar{b})\}, A \subseteq |N|, \bar{b} \in A$ then *there is a unique complete L-type p_A over A realized in some N', N* $\lt^*N' \models ``\psi$ ", *which contains* $\varphi(\bar{x}, \bar{b})$ and has the same rank. So $A \subseteq B \implies p_A \subseteq p_B$ and p_A does not split over \bar{b} , i.e. if

$$
\bar{c}_1, \bar{c}_2 \in A, tp \left(\bar{c}_1, \bar{a}, L, N \right) = tp \left(\bar{c}_2, \bar{a}, L, N \right)
$$

and $\psi \in L$ then $\psi(\bar{x}, \bar{c}_1, \bar{a}) \in p_A \Leftrightarrow \psi(\bar{x}, \bar{c}_2, \bar{a}) \in p_A$.

PROOF.

(A) Prove by induction on α that the truth of $R^m(\varphi(\bar{x}, \bar{a}), M) \ge \alpha$ depends only on $tp(\bar{a}, \phi, L, M)$.

(B) Easy.

(C) By (A) the number of possible ranks is countable, hence necessarily for some $\alpha_0 < \omega_1$ for no *p R^m(p, M) =* α_0 *.* Now prove by induction on $\alpha \ge \alpha_0$ that $R^{m}(p, M) \ge \alpha_0$ implies $R^{m}(p, M) \ge \alpha + 1$ (for α_0 this is the definition of α_0 , for α limit—immediate and $\alpha = \beta + 1$ use the definition of rank and the induction hypothesis).

(D) Easy.

LEMMA 4.2. *The following conditions on* ψ *satisfy* (B) \Rightarrow (A) \Leftrightarrow (C) \Rightarrow (D)

(A) ψ *is* \aleph_0 -stable.

(B) ψ *is* $(N_0, 1)$ -stable and has the N_0 -amalgamation property.

(C) For every finite p over M, M $\models ``\psi'', R'''(p, M) < \infty$.

(D) (α) ψ *is* $(\aleph_0, 1)$ -stable, and

(6) if N, $M \models ``\psi'', N \leq M, \bar{a} \in |M|$, then tp $(\bar{a}, |N|, L, M)$, is definable over *a* finite set \subseteq |N|, where

DEFINITION 4.3. Let $A \subseteq B \subseteq M = "\psi", \bar{a} \in |M|$, then $tp(\bar{a}, B, L, M)$ is definable over A, if for every $P_1(\bar{x}, \bar{y})$ there is $P(\bar{y}, \bar{b}), \bar{b} \in A$ such that for every $\bar{c} \in |B|$, $M = P(\bar{a}, \bar{c}) \Leftrightarrow M = P(\bar{c}, \bar{b}).$

REMARK. Not necessarily all the conditions are equivalent.

PROOF.

 $(B) \Rightarrow (A)$: This holds by 3.5(A).

(A) \Rightarrow (C): Let M be an \mathbf{N}_1 -saturated model of $T(\psi)$ and $N \leq M, ||N|| = \mathbf{N}_0$, $N = "\psi"$. Then we prove by standard techniques (see e.g. Keisler [6]).

CLAIM 4.3. Let M be an \mathbb{N}_1 -saturated model of $T(\psi)$, $A \subseteq |M|$, $|A| \leq \mathbb{N}_0$. Then there is a model N, such that

(i) $N < M$, $A \subseteq |N|$, $||N|| = N_0$

(ii) let $\bar{a} \in A$, M = " $\exists (Qx)\varphi(x,\bar{a})$ " ($\varphi \in L$) then for some $c \in |N| - A$, $M \models \varphi[c, \bar{a}]$ *iff there are* $\theta \in L$ *,* $\bar{b} \in A$ *,*

$$
M \models (\exists y) \theta(y, \overline{b}) \land (\forall y) (\theta(y, \overline{b}) \rightarrow \varphi(y, \overline{a}))
$$

but for no $c \in A$, $M \models \theta(c, \bar{b})$. Then it is easy to prove that if $R^m(p) = \infty$, for some p, then there are in $M \bar{a}$, $i < 2ⁿ$, satisfying the conditions of 4.3, and realizing in M over |N| distinct L-types such that by 4.3 there are N_i ,

 $|N| \cup \bar{a}_i \subset |N_i|, N <^*N_i, N_i < M$ (remember $R^m(p) \ge \omega_1 \Rightarrow R^m(p) > \omega_1$, and notice that the definition of rank is tailored for this proof.

 $(C) \Rightarrow (D)$, (A): Let $N = \forall \psi$ ", $||N|| = \aleph_0$, $N < \forall M \neq \forall \psi$ ", and $\bar{a} \in |M|$. Then by (C) and 4.1 there is $P(\bar{x}, \bar{b}) \in p_{\bar{a}} = tp(\bar{a}, |N|, L, M)$ with minimal rank, which is $\alpha < \infty$. Clearly by the definition of rank and the choice of $P(\bar{x}, \bar{b})$, $\mathbb{R}^m (\{P(\bar{x}, \bar{b})\}) \not\geq \alpha + 1$ implies that for no $P_1(\bar{x}, \bar{b}_1) (\bar{b}_1 \in |N|)$ do

$$
R^{m}(\lbrace P(\bar{x}, \bar{b}), P_{1}(\bar{x}, \bar{b}_{1}) \rbrace) \ge \alpha
$$

$$
R^{m}(\lbrace P(\bar{x}, \bar{b}), \neg P_{1}(\bar{x}, \bar{b}_{1}) \rbrace) \ge \alpha,
$$

both hold; so exactly one holds, the one contained in p_a . This proves that p_a is definable over a finite subset of $N(=\overline{b})$ so (D) (β) holds. As the number of such definitions is $\leq ||N|| + \aleph_0$ also (D) (α) (A) holds.

LEMMA 4.4. *Suppose* ψ is nice and \mathbf{x}_0 -stable, $M \lt^* N$, $\|N\| = \mathbf{x}_0 M = \psi$, $N\models ``\psi'', \bar{a}\in[N]$. Then there is a prime model M' over $|M|\cup \bar{a}$, *i.e.* $M\leq^*$ $M' < N$, and if $M <^*N'$, $\bar{a}' \in N'$, tp(\bar{a} , $|M|, L, N$) = tp(\bar{a}' , $|M|, L, N'$), then *there is an elementary imbedding f of M' into N', which is the identity over* $|M|$, *and* $f(\bar{a}) = \bar{a}'$, *and* N' Range $f \leq N'$.

M' is, in fact, the prime model of the first-order theory of $(N, c)_{c \in |M| \cup \bar{a}}$.

QUESTION. Can we demand $M' \lt^* N$, N' Range $f \lt^* N'$?

REMARK. (Until then this lemma is interesting mainly for $\psi \in L_{\omega_1,\omega_2}$)

PROOF. Clearly it suffices to prove:

(*) If $N = (\exists y)\varphi(y,\bar{a},\bar{b})$ ($\varphi \in L$) where $\bar{b} \in |M|$, then there is $\varphi_1(y,\bar{a},\bar{b})$ $(\bar{b}_1 \in |M|, \varphi_1 \in L)$ such that $N \models (\forall y)(\varphi_1(y, \bar{a}, \bar{b}_1) \rightarrow \varphi(y, \bar{a}, \bar{b}))$ and $\varphi_1(y, \bar{a}, \bar{b}_1)$ *isolates a complete L-type of y over* $|M| \cup \bar{a}$, and $N = (\exists y) \varphi_1(y, \bar{a}, \bar{b_1})$.

PROOF OF (*). Choose $\theta(y, \bar{x}, \bar{c})$ ($\bar{c} \in [M], \theta \in L$) such that

(i) $N = (\exists y)(\theta(y, \bar{a}, \bar{c}) \wedge \varphi(y, \bar{a}, \bar{b}))$

(ii) $R^{m+1}(tp(\bar{a}, |M|)) \cup \{\theta(y, \bar{x}, \bar{b})\}$ ($m = l(\bar{a})$) is minimal assuming (i) holds.

It is easy to see that $\theta(y,\bar{a},\bar{c})\wedge\varphi(y,\bar{a},\bar{b})$ isolates a complete L-type over $|M| \cup \bar{a}$, so we finish.

5: The order property

Let ψ be nice and \aleph_0 -stable.

DEFINITION 5.1. We say that ψ has the order property if there is a model M of ψ and $\bar{a}_\alpha \in |M|$ ($\alpha < \omega_i$) and formula $\varphi(\bar{x}, \bar{y}) \in L$ such that $M \models \varphi[\bar{a}_\alpha, \bar{a}_\alpha] \Leftrightarrow$ $\alpha \leq \beta$

DEFINITION 5.2.

(A) We say that ψ has the symmetry property if for $M < *N$, $N \models " \psi".$ $M = "w"$; $\bar{a}, \bar{b} \in |N|$

$$
R(tp(\bar{a},|M| \cup \bar{b},L,N) = R(tp(\bar{a},|M|L,N))
$$

iff

$$
R(tp(\overline{b},|M| \cup \overline{a},L,N)) = R(tp(\overline{b},|M|,L,M)).
$$

(B) We say that ψ has the asymmetry property if there are M, N, \bar{a} , \bar{b} as above such that

(i) $R(tp(\bar{a}, |M| \cup \bar{b}, L, N)) = R(tp(\bar{a}, |M|, L, N))$

(ii) for some $E = E(\bar{x}_1, \bar{x}_2, \bar{z}) \in L$, $E(\bar{x}_1, \bar{x}_2, \bar{a})$ is an equivalence relation with N_0 equivalence classes(in any model $N';N \lt N' = \psi$) and \bar{b} is not $E(\bar{x}_1, \bar{x}_2, \bar{a})$ equivalent to any sequence from $|M|$.

THEOREM 5.1. The following properties of ψ are equivalent (for nice N_0 $stable \psi$)

(A) ψ has the order property.

(B) ψ *does not have the symmetry property.*

 (C) ψ has the asymmetry property.

PROOF.

 $(B) \Rightarrow (A)$.

Let M, N, \bar{a} , \bar{b} be a counter example to the symmetry property, and let $\varphi(\bar{x}, \bar{y}, \bar{c})$ ($\bar{c} \in |M|, \varphi \in L$) be such that:

(i) $N = \varphi[\bar{a}, \bar{b}, \bar{c}]$

(ii) $R(\{\varphi(\bar{x}, \bar{b}, \bar{c})\}) < R(tp(\bar{a}, |M|, L, M))$

(by the symmetry between \bar{a} and \bar{b} we can assume this). We can also assume w.l.o.g. that $||N|| = N_0$.

Now define by induction on $\alpha < \omega_1$ models N_α ; and sequences \bar{a}_α , \bar{b}_α for limit α only such that:

(1) $||N_{\alpha}|| = N_0$

(2) for limit α , $N_a = \bigcup_{\beta \leq \alpha} N_{\beta}$ and $N_0 = N_a$

(3) $N_{\alpha} < *N_{\alpha+1}, N_{\alpha+2} < **N_{\alpha+3}.$

(4) for limit α , $\bar{a}_{\alpha} \in N_{\alpha+1}$ and $tp(\bar{a}_{\alpha}, |N_{\alpha}|, L, N_{\alpha+1})$ extends and has the same rank, as $tp(\bar{a}, |M|, L, N)$.

(5) for limit $\alpha, \bar{b}_{\alpha} \in |N_{\alpha+2}|$ and $tp(\bar{b}_{\alpha}, |N_{\alpha+1}|, L, N_{\alpha+2})$ extends, and has the same rank, as $tp(\bar{b}, |M|, L, N)$.

This is easy to do. Clearly by (4) and (2) and Lemma 4.1A

and as by 4.1D $tp(\bar{a}_{\alpha},|N_{\alpha}|,L,N_{\alpha+1})$ does not split over $|M|$, necessarily $\beta < \alpha \Rightarrow N_{\alpha+1} = \exists \varphi[\bar{a}_\alpha, \bar{b}_\beta, \bar{c}].$

Similarly we can prove that for $\alpha \leq \beta$,

$$
tp\left(\bar{a}_{\alpha} \wedge \bar{b}_{\beta}, |M|, L, N_{\beta+2}\right) = tp\left(\bar{a} \wedge \bar{b}, |M|, L, N_{\beta+2}\right)
$$

hence $N_{\beta+2} = \varphi[\bar{a}_\alpha, \bar{b}_\beta, \bar{c}]$. As $N^* = \bigcup_{\alpha < \omega_1} N_\alpha$ is a model of ψ (by 3.3(A)) letting $\bar{c}_{\alpha} = \bar{a}_{\alpha} {\delta_{\alpha} \delta_{\alpha} \bar{c}}$ and $\theta(\bar{x}_1, \bar{y}_1, \bar{z}_1; \bar{x}_2, \bar{y}_2, \bar{z}_2) = \varphi(\bar{x}_1, \bar{y}_2, z_2)$ we find that $N = \psi$ and $N = \theta[\bar{c}_{\alpha}, \bar{c}_{\beta}] \Leftrightarrow \alpha \leq \beta$. So we finish.

 $(C) \Rightarrow (B)$.

Let M, N, \bar{a} , \bar{b} , E be as in Definition 5.2(B). Clearly it suffices to prove $p_1 = tp(\bar{b}, |M| \cup \bar{a}, L, N)$ has rank smaller than that of $p_2 = tp(\bar{b}, |M|, L, N)$. Suppose not, and let $\varphi(\bar{x}, \bar{c}) \in p_2$ has the same rank as p_2 , so that (using 4.1B) $R(tp(\bar{a},\bar{c},L,N))=R(tp(\bar{a},M,L,N)).$ Choose $\bar{b'} \in |M|$, $tp(\bar{b'},\bar{c},L,M)=$ $tp(\overline{b}, \overline{c}, L, M)$, and define models $N_{\alpha}(\alpha < \omega_1)$ so that $N_{\alpha} < **N_{\alpha+1}, N_{\delta} =$ $\bigcup_{\alpha < \delta} N_{\alpha} = \forall \psi$ ", $\|N_{\alpha}\| = \aleph_0$, and $\bar{b}_{\alpha} \in N_{\alpha+1}$, $N_{\alpha} = \psi(\bar{b}_{\alpha}, \bar{c})$ and $R(tp)$ $(\bar{b}_a, N_a, L, N_{a+1})=R(\varphi(\bar{x}, \bar{c})).$ As $E(\bar{x}_1, \bar{x}_2, \bar{a})$ has in $\bigcup_{\alpha<\omega} N_\alpha$ only \aleph_0 equivalence classes, for some $\beta < \alpha < \omega_1$, $E(\bar{b}_\alpha, \bar{b}_\beta, \bar{a})$. We can assume not (B), so $R(tp(\bar{b}',\bar{c} \land \bar{a},L,N))=R(\{\varphi(\bar{x},\bar{c})\})$, so by 5.2B (below) $E(\bar{b}',\bar{b},\bar{a})$, contradicting the definition 5.2(B).

 $(A) \Rightarrow (C)$

During this proof we shall prove several claims. Of course we can assume $\|N\|$ = $\mathbf{x}_{\mathbf{i}}$.

CLAIM 5.2. Suppose $N=$ ψ , and I^* is a set of N_1 sequences from N and $A \subseteq |N|$ is countable, and $||N|| = N_1$.

(A) We can find an N_{α} <*N, $A \subseteq |N_0|$, N_{α} <** $N_{\alpha+1}$, $N_{\delta} = \bigcup_{\alpha < \delta} N_{\alpha}$, $N =$ $\bigcup_{\alpha<\omega_1}N_\alpha$ and $\bar{a}_\alpha\in |N_{\alpha+1}|$, $\bar{a}_\alpha\not\in |N_\alpha|$, $\bar{a}_\alpha\in I^*$ and $\bar{c}\in |N_0|$ and $\varphi\in L$ such that $N = \varphi[\bar{a}_{\alpha}, \bar{c}]$, and $R(tp(\bar{a}_{\alpha}, |N_{\alpha}|, L, N)) = R(\{\varphi(\bar{x}, \bar{c})\}).$

(B) The conditions of (A) or even $R(tp(\bar{a}_\alpha, \bigcup_{\beta<\alpha}\bar{a}_\beta\cup A,L,N))=$ $R(\{\varphi(\bar{x},\bar{c})\})$ and $N|=\varphi(\bar{a}_{\alpha},\bar{c})$ implies $\{\bar{a}_{\alpha}: \alpha < \omega_1\}$ is an indiscernible sequence over A, i.e. if

$$
\alpha(l, 1) < l(l, 2) \cdots < \alpha(l, n) < \omega_1(l = 1, 2, n < \omega)
$$

then

 $tp\left(\bar{a}_{\alpha(1,1)}\hat{a}_{\alpha(1,2)}\hat{a}_{\alpha(1,2)}, \cdots \hat{a}_{\alpha(1,n)}, A, L, N\right) = tp\left(\bar{a}_{\alpha(2,1)}\hat{a}_{\alpha(2,2)}\hat{a}_{\alpha(2,2)}, \cdots \hat{a}_{\alpha(2,n)}, A, L, N\right)$ (in any case we assume $\varphi(\bar{x},\bar{c})$ is as in (A)).

(C) If ψ does not have the order property, in (B) we get that $\{\bar{a}_{\alpha} : \alpha < \omega_1\}$ is an indiscernible set over A (i.e. we demand only that $\{\alpha(l, i): i = 1, n\}$ are distinct.

PROOF.

(A) We can easily find appropriate N_a 's. Now for $\alpha < \omega_1$, choose inductively $\bar{a}_{\alpha}^{\perp} \in I$, $\bar{a}_{\alpha}^{\perp} \notin |N_{\alpha}|$, $\bar{a}_{\alpha}^{\perp} \notin {\bar{a}_{\beta}}$; $\beta < \alpha$, and choose $\varphi_{\alpha} \in L$, $\bar{b}_{\alpha} \in |N_{\alpha}|$ so that $R(tp({\bar a}_{\alpha}^1, |N_{\alpha}|, L, N) = R(\varphi_{\alpha}(\bar x, \bar b_{\alpha}))$ and $N|=\varphi_{\alpha}(\bar a_{\alpha}^1, b_{\alpha})$.

By a theorem of Fodour [2] it follows that there is $S \subset \omega_1$, $|S| = N_1$ such that $\alpha \in S \implies \varphi_{\alpha} = \varphi,~ \overline{b}_{\alpha} = \overline{b}$. By renaming we get our conclusion.

(B) and (C). The proof essentially is as in Morley [9], Shelah [13].

DEFINITION 5.2. Let $M = "\psi", J$ an ordered set, and $\bar{a}_i \in |M|$ for $t \in J$. Then the indexed set $\{\bar{a}_i : t \in J\}$ is called nice in M if for every $\bar{b} \in |M|$ there is a finite set $S \subseteq J$ such that if $t(1) \approx t(2) \mod S$ [i.e. $(\forall t \in S)$] $(t < t(1) \equiv t < t(2) \land t = t(1) \equiv t = t(2)$ then $tp(\bar{a}_{(1)})^k \bar{b}_1 \phi_2 L, M) = tp$ $(\bar{a}_{(2)} \, \hat{\,} \bar{b}, \phi, L, M).$

CLAIM 5.3.

(A) The indexed set $\{\bar{a}_{\alpha}: \alpha < \omega_1\}$ from 5.2A is nice in N

(B) If $\{a_i : t \in J\}$ is nice in M, $M \lt N N = \psi$ then it is nice in N.

PROOF.

(A) Let $\bar{b} \in N$, so for some $\alpha \bar{b} \in |N_{\alpha+1}|$, $\bar{b} \notin N_{\alpha}$ or $\bar{b} \in |N_0|$. If $\bar{b} \in |N_0|$ clearly $S = \phi$ will do. We prove the existence of $S = S(b)$ by induction on α . So by 4.1C for some $\bar{c} \in |N_{\alpha}|$ *tp*(\bar{b} , $|N_{\alpha}|,L,N$) does not split over \bar{c} . Choose $S(\bar{b}) = {\alpha} \cup S(\bar{c})$, and clearly this will do.

(B) For every $\bar{b} \in N$ choose $\bar{c} \in |M|$ so that $tp(\bar{b}, |M|, L, N)$ does not split over \bar{c} . Clearly if $t(1), t(2) \in J$, $t(1) \approx t(2) \mod S(\bar{c})$ ($S(\bar{c})$) — the *S* we can choose for \bar{c} by Definition 5.3) then $tp(\bar{b} \cap \bar{a}_{\epsilon(1)}, \phi, L, N) = tp(\bar{b} \cap \bar{a}_{\epsilon(2)}, \phi, L, N)$. So we finish.

CONTINUATION OF THE PROOF OF 5.1, $(A) \Rightarrow (C)$

So let *N*, N_{α} , \bar{a}_{α} , $\varphi(\bar{x}, \bar{c})$ ($\alpha < \omega_1$) be as in 5.2A. We can assume $|N| = \omega_1$, $|N_{\alpha}| = \omega \alpha$.

Now it is known (see e.g. [5]) that if $\theta \in L_{\omega_0,\omega}(Q)$ has a model of order type ω_1 , then it has a model which is countable and has an order type which contains a copy of the rationals.

Hence, using extra-predicates, there is an ordered set *J*, models $N_t(t \in J)$ and elements \bar{a}_{i} ($t \in J$) such that

(1) *J, N_t* are countable, and $N_{t(0)} = N_0$ where $t(0)$ is the first element of *J*, and J contains a copy of the rationals.

(2) $N_t = " \psi"$

(3) $t(1) < t(2) \in J \Rightarrow N_{t(1)} < ** N_{t(2)}$, and let $N^* = \bigcup_{t \in J} N_t$

(4) for each $\bar{a} \in \bigcup_{i \in J} |N_i| - |N_{t(0)}|$ there is $t = t_{\bar{a}} \in J$ such that $a \in |M_{t+1}|$, $\bar{a} \not\in |M_t|$ (t + 1 – the successor of t)

(5) $\bar{c} \in |N_{t(0)}|$, $N_{t+1} = \varphi[\bar{a}_t, \bar{c}]$ and $tp(\bar{a}_t, |N_t|, L, N_{t+1})$ has the same rank as $\varphi(\bar{x}, \bar{c})$

(6) for each $\bar{a} \in \mathbb{N}^*$ there is a finite $S(\bar{a}) \subset J$ such that $t(1), t(2) \in J$, $t(1) \sim t(2) \mod S(\bar{a})$ implies $tp(\bar{a} \land \bar{a}_{(1)}, \phi, L, N^*) = tp(\bar{a} \land \bar{a}_{(2)}, \phi, L, N^*)$

(7) for each $\bar{b} \in |N_{t+1}| - |N_t|$ there are $n, t(1) < \cdots < t(n) = t$ and $\bar{b}_0 \in |N_o|$, and $\vec{b}_i \in [N_{t(i)+1}], \vec{b}_i \notin [N_{t(i)},$ such that, for $0 \le k \le l \le n$, $tp(\vec{b}_i, N_{t(k)}, L, N^*)$, $tp(\bar{b}_i, \bar{b}_k, L, N^*)$ have the same rank.

REMARK. For the original N_a 's, (7) follows immediately.

As J contains a copy of the rational order, it has a Dedekind cut (J_1, J_2) $(J_1$ the lower part) with no last element in J_1 nor first element in J_2 , (and $J_1 \neq \emptyset$, $J \neq \varnothing$).

By (6) there is an N_1 -saturated model M of $T(\psi)$, $N^* < M$, and $\bar{a}^* \in |M|$ so that for $\bar{b} \in N^*$, $\varphi \in L$.

 $M \models \varphi(\bar{a}^*, \bar{b}) \Leftrightarrow$ there are $t(1) \in I_1$, $t(2) \in I_2$ so that $t(1) < t < t(2)$ implies $N^* \models \varphi[\bar{a}, \bar{b}].$

Clearly for every $\bar{c} \in |N^*| \cup \bar{a}^*, tp(\bar{c}, \phi, L, M)$ is isolated. If there is a model *M'*, N^* < **M'* < *M*, $\bar{a}^* \in M'$, M' = " ψ ", then $tp(\bar{a}^*, |N^*|, L, M')$ split over every finite set $\subseteq |N^*|$, contradiction. By 4.3 there are $\bar{c}_1 \in |N^*|$, $\theta_1, \theta_2 \in L$ such that

 (α) N^* = " $\Box(Qx) \theta_1(x,\bar{c}_1)$ "

(B) $M \models (\exists y) \theta_2(y, \bar{a}^*, \bar{c}_1)$

(y) $M \models (\forall y)(\forall \bar{x})(\forall \bar{z})[\theta_2(y, \bar{x}, \bar{z}) \rightarrow \theta_1(y, \bar{z})]$

(δ) for no $d \in |N^*|$, $N^*| = \theta_1(d,\bar{c}_1)$ and $M| = \theta_2[d,\bar{a}^*,\bar{c}_1]$.

By (7) we can find $t(1) \in I_1$, $t(2) \in I_2$ and $\tilde{c}_2 \in N_{t(1)}$ such that $tp(\bar{c}_1, |N_{t(2)}|, L, N^*)$, $tp(\bar{c}_1, \bar{c}_2, L, N^*)$ have the same rank. By notational changes we can assume $t(1) = t(0), \bar{c}_2 = \bar{c}, \bar{c}_1 \in N_{t(2)+1}$. Let

$$
E(\bar{x}_1, \bar{x}_2; \bar{z}) = (\forall y) [\theta_2(y, \bar{x}_1, \bar{z}) \equiv \theta_2(y, \bar{x}_2, \bar{z})].
$$

Clearly $E(\bar{x}_1, \bar{x}_2; \bar{z})$ is an equivalence relation, and if $N^* \alpha^* M_1 = \dot{w}^*, \bar{c} \in M_1$. $M_1 = " \neg (Qy) \theta_1(y, \bar{c}')"$ then in $M_1 E(\bar{x}_1, \bar{x}_2; \bar{c}')$ has $\leq \aleph_0$ equivalence classes (by the \mathbf{N}_0 -stability of ψ). Hence if $\bar{c}^1 \in |M_1|$, $M_1 \lt M_2 = \psi$, $M_1 = \omega$ $(Qy)\theta_1(y,\bar{c}^{\prime})$ " then there is in M_2 no new $E(\bar{x}_1,\bar{x}_2;\bar{c}^{\prime})$ -equivalence class.

So $E(\bar{x}_1, \bar{x}_2; \bar{c}_1)$ has \aleph_0 equivalence classes: it has $\leq \aleph_0$ by the previous argument, and $t(3) < t(4) < t(2)$ implies $N^* = \exists E(\bar{a}_{\mu} \cdot \bar{a}_{\mu} \cdot \bar{c}_1)$. The last formula implies of course that $a_{(0)}$ is not $E(\bar{x}_1, \bar{x}_2; \bar{c}_1)$ -equivalent to any sequence from $N_{(0)}$. So clearly (C) holds with N_0 , $N^*, \bar{c}_1, \bar{a}_{(0)}$ for M, N, \bar{a}, \bar{b} respectively.

THEOREM 5.4. If ψ (is nice, \aleph_0 -stable and) has the asymmetry property *then* $I(N_1, \psi) = 2^{N_1}$.

PROOF. Let M, N, \bar{a} , \bar{b} , E be as in Definition 5.2(B). $||N|| = N_0$ w.l.o.g. Now we define by induction on $\alpha < \omega_1$ models N_n such that:

$$
(1) N_0 = N
$$

(2) N_{α} $=$ " ψ ", $\|N_{\alpha}\|$ = κ_0

(3) $N_a < *N_{a+1}$ and $N_{a+1} < **N_{a+2}$. Moreover every L-type over N_{a+1} realized in some $N', N_{\alpha+1} < *N'$, is realized in $N_{\alpha+2}$.

(4) $N_6 = \bigcup_{i \leq 8} N_i$ for limit δ

(5) $N_{\delta+1}$ is prime over $|N_{\delta}| \cup \bar{a}_{\delta}$ (see Lemma 4.4) where $tp(\bar{a}_{\delta}, |N_{\delta}|, L, N_{\delta+1})$ extend and has the same rank as $tp(\bar{a}, |M|, L, N)$; for limit δ .

(6) $\bar{b}_{\beta+1} \in |N_{\beta+2}|$

Where $tp(b_{\beta+1},|N_{\beta+1}|,L,N_{\beta+2})$ extend and has the same rank as $tp(\bar{b}, |M|, L, N)$

So clearly $N^* = \bigcup_{\alpha < \omega_1} N_{\alpha} \models \psi$. Note that if $\delta < \omega_1$ (is a limit ordinal and $\bar{c} \in |N_8|$ then for every $\alpha < \delta$, $\bar{c} \in |M_\alpha|$ and for all $\beta, \alpha < \beta < \delta$ the types tp(\bar{c} $\delta_{\beta+1}$ \bar{a}_s , ϕ , L, N*) are equal. (i.e., the type does not depend on β nor on 6).

Notice that all the $E(\bar{x}, \bar{y}; \bar{a}_s)$ equivalence classes are representable in $N_{\delta+1}$ (otherwise we can get a contradiction to the choice of E by (3)). Now for no $\overline{b}^{\prime} \in N^*$ is $tp(\overline{a_s}^{\wedge} \overline{b}',|N_s|,L,N^*)=tp(\overline{a_{s+m}},\overline{b_{s+1}},|N_s|,L,N^*)$. Otherwise choose $\bar{b}'' \in N_{\delta+1}$ such that $N^* = E[\bar{b}', \bar{b}'', \bar{a}_\delta]$, so by the conditions in Definition 5.2 (B), N^* = $\neg E[b^{\prime\prime}, \bar{b}_\alpha, \bar{a}_\delta]$ for any $\alpha < \delta$. By 4.4 we can choose $\bar{c} \in |N_\delta|$ and φ so that N^* = $\varphi[\bar{b}'', \bar{a}_s, \bar{c}]$ and $\varphi(\bar{x}, \bar{a}_s, \bar{c})$ + $tp(\bar{b}'', \bar{a}_s \cup |N_s|, L, N^*)$ and let $\bar{c} \in |N_{\alpha}|$, $\alpha < \delta$ and $\alpha < \beta < \delta$. Then $\varphi(\bar{x}, \bar{a}_{\delta}, \bar{c})$ $\vdash \exists E(\bar{x}, \bar{b}_{\beta}, \bar{c})$ hence $\varphi_1(y_1, \bar{a}_s, \bar{c}) \stackrel{df}{=} (\exists y)(E(\bar{x}, \bar{y}, \bar{a}_s) \wedge \varphi(\bar{y}, \bar{a}_s, \bar{c})) \vdash \neg E(\bar{x}, \bar{b}_\beta, \bar{c})$

but $N^* \models \varphi_1[\bar{b}_\beta, \bar{a}_\delta, \bar{c}]$ so $N^* \models \neg E(\bar{b}_\beta, \bar{b}_\beta, \bar{a}_\delta)$, a contradiction.

As in the Proof of 5.1 (A) \rightarrow (C), using [16], 2.14, for every set $S \subseteq \omega_1$ we can find an order J, and models N_t , $t \in J$, and sequences \bar{a}_t, \bar{b}_t , such that

(A) $J = \bigcup_{\alpha < \omega_1} J_\alpha, |J_\alpha| = \mathbf{N}_0, |J| = \mathbf{N}_1, J_\alpha$ is an initial segment of $J; J - J_\alpha$ has a first element iff $\alpha \in S$; and J is elementarily equivalent to ω_1 . Also $\alpha < \beta \Rightarrow$ $J_{\alpha} \subseteq J_{\beta}$ and $J_{\delta} = \bigcup_{\alpha < \delta} J_{\alpha}$ for limit δ .

Vol. 20, 1975 **CATEGORICITY IN** $\boldsymbol{\kappa}_1$ 143

(B) The conditions parallel to (1)–(6) above holds. We denote $\bigcup_{i \in J} N_i$, which is a model of ψ of cardinality \mathbf{N}_1 , by N_S . Let $\bar{c} \in M$, $\varphi_1, \varphi_2 \in L$ be such that $N|=\varphi_{1}[\bar{a},\bar{c}]\wedge\varphi_{2}[\bar{a}^{\wedge}\bar{b},\bar{c}]$ and $\varphi_{1}(\bar{x},\bar{c}),\varphi_{2}(\bar{x},\bar{y},\bar{c})$ has the same rank as $tp(\bar{a}, |M|, L, N), tp(\bar{a} \land \bar{b}, |M|, L, N)$ resp.

Now clearly

$$
(*) \qquad \text{Let } \alpha < \omega_1, N^\alpha = \bigcup_{t \in I_\alpha} N_t. \text{ Then } \alpha \in S \text{ iff there are } \bar{c}' \in N^\alpha,
$$

 $tp(\bar{c}, \phi, L, N) = tp(\bar{c}', \phi, L, N^{\alpha})$, and $\bar{a}' \in N_s$, $N_s = \varphi_1[\bar{a}', \bar{c}']$, and $\varphi_1(\bar{x}, \bar{c}')$ has the same rank as $tp(\bar{a}', |N^*|, L, N_s)$ such that for no $\bar{b}' \in |N_s|$ does N_s = $\varphi_2[\bar{a}'^{\hat{}}\bar{b}', \bar{c}'']$ and $\varphi_2(\bar{x}, \bar{y}, \bar{c}')$ has the same rank as $tp(\bar{a}'^{\hat{}}\bar{b}',|N^{\alpha}|,L, N_s)$.

$$
(**)
$$

If $N_{S} = \bigcup N_{\alpha}^{1} (\alpha < \omega_{1}), N_{\alpha}^{1} < *N_{S}, ||N_{\alpha}^{1}|| = \aleph_{0}, N_{\alpha}^{1} < *N_{\alpha+1}^{1}, N_{\delta}^{1} = \bigcup_{\alpha < \delta} N_{\alpha}^{1}$

then $\{\alpha: N_{\alpha}^{\perp} = N^{\alpha}\}\$ is a closed and unbounded subset of ω_{\perp} .

We can easily conclude that $N_{s} \cong N_{s}$, implies that S_1, S_2 are equal modulo the filter on ω_1 generated by the closed unbounded subsets of ω_1 . Hence e.g. by Solovay [17], $I(\mathbf{N}_1, \psi) = 2^{\mathbf{N}_1}$.

THE N_0 -AMALGAMATION LEMMA 5.5.

(A) Let ψ be nice and \aleph_0 -stable, $N = \psi$, $(l = 0, 1, 2)N_0 < \psi N_1$, $N_0 < \psi N_2$. *Then there is a model M of T(* ψ *) and elementary embeddings f_i of N_i into M* $f_i|N_0|=$ the identity, f_i maps N_i onto N'_i $(l=1,2)$, and for $\bar{a}\in[N'_2]$ $tp(\bar{a},N'_1,L,M)$ has the same rank as $tp(\bar{a},|N_0|,L,M)$.

(B) *Under the conditions of (A), if* $||N_1|| = ||N_2|| = \aleph_0$ *there is M'* < *M,* $M' = "w", N' < *M'.$

(C) If ψ has the symmetry property, then in (B) we can have also N'_2 < *M'.

(D) If ψ has the symmetry property, it has the N_0 -amalgamation property.

PROOF.

(A) Immediate.

(B) Follows by claim 4.3.

(C) Immediate by 4.3, as then the conditions in (A) are symmetric for N'_1 and N^{\prime} .

(D) Immediate by (C).

LEMMA 5.6. *Suppose* ψ *is nice,* \aleph_0 -stable and with the symmetry property.

(A) If $N \models \psi$, $\|N\| = \aleph_1$ *then there is M, M* $\mid = \psi$, *N* < **M, M* \neq *N*.

(B) Moreover there is such an M of cardinality \aleph_2 .

PROOF.

(A) Let $N = \bigcup_{\alpha < \omega_1} N_\alpha$, $||N_\alpha|| = \mathbf{N}_0$, $N_\alpha <$ ** $N_{\alpha+1}$, $N_\delta = \bigcup_{\alpha < \omega_1} N_\alpha$, and let $N < M$, M an N_2 -saturated model of $T(\psi)$. We now define by induction on α models M_{α} and embedding $f_{\beta,\alpha}$ (for $\beta < \alpha$) such that:

(1) $N_{\alpha} < *M_{\alpha}, M_0 \neq N_0$

(2) $f_{\beta,\alpha}$ is an elementary embedding of M_{β} into M_{α}

(3) M_{α} | Range $f_{\beta,\alpha}$ < * M_{α}

(4) $f_{\beta,\alpha}$ \bigwedge_{β} = the identity

(5) if $\gamma < \beta < \alpha$ then $f_{\gamma,\alpha} = f_{\beta\alpha} f_{\alpha,\beta}$

(6) if $\bar{a} \in |M_{\beta}|$, $\beta < \alpha$, then $tp(\bar{a}, |N_{\beta}|, L, M_{\beta})$ has the same rank as $tp(f_{\beta,\alpha}(a),N_{\alpha},L,M_{\alpha}).$

We can define $M_0 = N_1$, and then proceed by 5.5 for successor ordinal, and using the limit for limit ordinal. We can assume $M_{\beta} < *M_{\alpha}$ for $\beta < \alpha$.

Clearly $\bigcup_{\alpha<\omega_1} M_\alpha$ is the required model.

(B) By repeating (A) we get $M_{\alpha} (\alpha < \omega_2)$, $M_{\beta} <^* M_{\alpha} \neq M_{\beta}$ for $\beta < \alpha$, $M_0 = N$. Clearly $\bigcup_{\alpha<\omega_2}M_\alpha$ is as required.

Without any assumptions on ψ let us prove.

MAIN THEOREM 5.7. $(V = L \text{ or } \diamondsuit_{\mathbf{x}_1}$ If $\psi \in L_{\omega_1,\omega}(Q)$, $I(\mathbf{x}_1, \psi) < 2^{\mathbf{x}_1}$, but ψ has *an uncountable model, then* ψ has a model of cardinality \aleph_2 .

PROOF. Clearly we can replace in the proof ψ by ψ' if $I(\lambda, \psi') \leq I(\lambda, \psi)$ for $\lambda > N_0$, but $I(N_1, \psi') \geq 1$.

Let M be an uncountable model of ψ , so by the downward Löwenheim-Skolem theorem we can assume $||M|| = N_1$.

By 2.1A for every fragment L^* of $L_{\omega_1,\omega}(Q)$, only countably many L^* -types are realized in M. By Theorem 2.3A, ψ has a model M_1 of cardinality \aleph_1 in which only countably many $L_{\omega_1,\omega}(Q)$ -types are realized. By 2.5A for some fragment L^* of $L_{\omega_1,\omega}(Q)$, M_1 is (L^*, \aleph_0) -homogeneous. By 3.1(C), 2.5(C) for some almost nice ψ_1 , $M_1 = \psi_1$, $\psi_1 + \psi_2$, so we can replace ψ by ψ_1 . By 3.1(A) we can replace ψ_1 by a nice ψ_2 . By 3.4 ψ_2 has the \aleph_0 -amalgamation property, and by 2.1(B) it is $(N_0, 1)$ -stable. By Theorem 4.2 ψ_2 is N_0 -stable. By Theorem 5.4 ψ_2 does not have the asymmetry property, hence by 5.1 it has the symmetry property. Hence by 5.7 ψ_2 has a model of cardinality \mathcal{N}_2 .

CONJECTURE. If $\psi \in L_{\omega_1,\omega}(Q)$ has an uncountable model, then it has at least *2 "1 non-isomorphic models.*

6. Various results

We give here various additional results, but do not elaborate the proofs or omit them.

LEMMA 6.1. *Suppose* $\psi \in L_{\omega_1,\omega}(Q)$ has a model of cardinality \mathbf{a}_{ω_1}

(A) *Then some model of* ψ *of cardinality* $\geq \mathbf{I}_{\omega_1}$ *satisfies an almost-nice* sentence ψ' .

(B) *So* $\lambda > \aleph_0 \Rightarrow I(\lambda, \psi) \ge I(\lambda, \psi')$ *and equality holds if* ψ *is categorical in some* $\mu \leq \lambda$.

(C) If ψ is categorical in \aleph_1 then it is $(\aleph_0, 1)$ -stable.

PROOF. Let M be an Ehrenfeucht-Mostowski model of ψ of cardinality \mathbf{a}_{ω} , (see e.g. [5]), with dense skeleton. Then in M only countably many $L_{\omega_1,\omega}(Q)$ types are realized. Hence we finish (A), and (B) is immediate. By the proof of Morley [9] (C) is immediate.

LEMMA 6.2. *Suppse* $\psi \in L_{\omega_0,\omega}(Q)$ is nice and has a model of cardinality $\mathbf{1}_{\omega_1}$ *and is categorical in* N_1 . Then ψ is N_0 -stable.

PROOF. Let M¹ be an Ehrenfeucht-Mostowski model of ψ . (M¹ is an L₁model, $L \subseteq L_1$) which is the closure of the indiscernible sequence $\{y_i : i < \omega_1\}$. Let M_{α}^{\perp} be the closure of $\{y_i: i < \alpha\}$ and $M(M_{\alpha})$ the L-reduct of $M^{\perp}(M_{\alpha}^{\perp})$. It is easy to see that $\alpha < \beta \Rightarrow M_{\alpha} <^* M_{\beta}$. By [12] in M we cannot find a set of N_1 sequence which some $\varphi \in L$ ordered. From this it is not hard to deduce that if $\bar{a} \in |M|$, β limit for some $\alpha < \beta tp(\bar{a},|M_{\beta}|,L,M)$ does not split over M_{α} , and there is $\bar{a}' \in |M_{\alpha}|$ such that $tp(\bar{a}, |M_{\beta}|, L, M) = tp(a', |M_{\beta}|, L, M).$ If T is not \mathcal{N}_{α} -stable, we can find models N_{α} ($\alpha < \omega_1$) such that $N_{\alpha} <$ ** $N_{\alpha+1}$ $N_{\delta} = \bigcup_{\alpha < \delta} N_{\alpha}, ||N_{\alpha}|| = \mathbf{N}_{0}, N_{\alpha} = \forall \psi$ and the condition mentioned above does not hold (i.e. for every δ there is $\bar{a} \in |N_{\delta+1}|$ such that: $tp(\bar{a}, |N_{\delta}|, L, N_{\delta+1})$ split over every $|N_{\alpha}|$, $(\alpha < \delta)$ *or* for some $\alpha < \delta$, tp(a, |N_a |, L, N_{δ+1}) is not realized in N_{s} .)

It is easy to check that $N = \bigcup_{\alpha < \omega_1} N$ is not isomorphic to M, but is a model of ψ of cardinality \aleph_1 , contradiction.

The following lemma was once used in the proof of 5.6 so we do not prove it.

LEMMA 6.3. Let ψ be nice, \aleph_0 -stable, with the symmetry property. Let M be a *model of* $T(\psi)$, $N_1 < N_2 < M$, $\|N_2\| = \aleph_0$, $\bar{a} \in |M|$, $M_1 < M$ is prime over $|N_i| \cup \bar{a}$; and N_1, N_2, M_1, M_2 = " ψ ". Then there is an elementary embedding f of *M₁* into M_2 , $f'(|N_1| \cup \bar{a}) =$ *the identity and M₂</sub> Range* $f \lt M_2$.

From here we work in L_{ω_1,ω_2} .

We could reduce all the previous discussion to $L_{\omega_{1},\omega}$. The only noticeable changes are the omitting of (y) in Definition 4.1 (of rank), and replacing " ψ F(Qx)x = x" by " ψ has an uncountable model" in Definition 3.1 (of niceness), and we can drop \lt^* , \lt^* and

LEMMA 6.4. If ψ is nice and \aleph_0 -stable, then *it does not have the order property (and does have the symmetry property.*

PROOF. Follows by the proof of 5.1 (A) \Rightarrow (C) (as we lack the alternative followed there).

DEFINITION 6.1. Let $M \models ``\psi"$,

(A) the formula $\varphi(\bar{x}, \bar{a})$ ($\bar{a} \in |M|$, $\varphi \in L$) is big if there is a model N, $N=$ " ψ ", $M <$ *N, and some $\bar{c} \in |N|$, $\bar{c} \notin |M|$ satisfies $\varphi(\bar{x}, \bar{a})$.

(B) The formula $\varphi(\bar{x}, \bar{a})$ is minimal if it is big but for no $\theta \in L, \bar{b} \in |M|$, are both $\varphi(\bar{x}, \bar{a}) \wedge \theta(\bar{x}, \bar{b})$ and $\varphi(\bar{x}, \bar{a}) \wedge \neg \theta(\bar{x}, \bar{b})$ big.

(C) If $\bar{a} \in M$, $A \subset M$, $tp(\bar{a}, A, L, M)$ is big (minimal) if some formula in it is.

LEMMA 6.5.

(A) The properties " $\varphi(\bar{x}, \bar{a})$ is big", " $\varphi(\bar{x}, \bar{a})$ is minimal" depends only on $tp(\bar{a}, \phi, L, M)$

(B) If $\varphi(\bar{x}, \bar{a})$ *is minimal* $\bar{a} \in A \subseteq M$ = " ψ ", then *there is a unique complete L*-type over A realized in some N, $M \lt N$ = " ψ ", which is big and contains $\varphi(\bar{x}, \bar{a})$.

PROOF Immediate.

LEMMA 6.6 . Let ψ be nice and \aleph_{0} -stable.

(A) If $M \models \psi$ there is a minimal formula $\varphi(\bar{x}, \bar{a})$, $\bar{a} \in A$.

(B) If $M \models \psi$, $\bar{a} \in |M|$, $\varphi(\bar{x}, \bar{a})$ is minimal, then the dependence relation *among sequences satisfying* $\varphi(\bar{x}, \bar{a})$ *, defined by "* \bar{b} *depends on* $\{\bar{b}_1, \bar{b}_2, \dots\}$ *if* $tp(\bar{b}, \bar{a} \cup_i \bar{b}_i, L, M)$ is not big" satisfies the axioms for linear dependence (which enable us to define dimension).

PROOF.

(A) Choose $\varphi(x,\bar{a})$ with minimal rank such that for some N, $M \le N$, $N \ne \psi$, and $c \in |N|-|M|$, $N|=\varphi[c,\bar{a}]$.

(B) Easy, remembering 6.5.

LEMMA 6.7. Let ψ be nice and \aleph_0 -stable. Then ψ is categorical in \aleph_1 , iff for *every model N,* $||N|| = N_1$, $N| = \psi$ *for every minimal* $\varphi(x, \bar{a})$ $(\bar{a} \in N)$ $|{c \in |N| : N \models \varphi[c, \bar{a}]}| = \aleph_1$ iff *for every model M,N of* ψ *, M < N, and* *minimal* $\varphi(x, \bar{a})$ ($\bar{a} \in |M|$) for some $c \in |N| - |M|$, $N = \varphi[c, \bar{a}]$ iff over every *countable N* \models *ψ, there is a prime model M, of* ψ *i.e. N* $\leq M \models$ *W, N* \neq *M, and if* $N \leq M' \models \psi, N \neq M'$, then there is an elementary embedding of M into M' which *is the identity over* $|N|$.

PROOF. Left to the reader.

This seemed a reasonable characterization of categoricity.

CONCLUSION 6.8. Let ψ be nice, \aleph_0 -stable and categorical in \aleph_1 . Then its *model M of cardinality* N_1 *is* N_2 -*model-homogeneous, i.e. if* $N_1, N_2 < M$, f an *isomorphism from* N_1 *onto* N_2 , N_1 , N_2 *are countable then we can extend f to an automorphism of M.*

REMARKS. (1) We can easily generalize Lemma 3.4 (that the lack of the amalgamation property implies $I(\mathbf{N}_1, \psi) = 2^{N_1}$ to higher cardinals and to pseudo-elementary classes.

(2) If $T \subseteq L(Q)$, and for every finite set of formulas $\Gamma \subseteq L(Q)$ there is a model M of $T, ||T|| = N_1$ such that for every countable $A \subseteq |M|$ $|{p(\bar{a}, A, \Gamma, M): \bar{a} \in |M|}| \le \aleph_0$ *then* T has a model N, $||N|| = \aleph_1$, such that the number of $L_{\omega_{1},\omega}(Q)$ -types realized in N is countable. The proof is analagous to 2.3.

(3) Claim 5.2 generalizes easily to any regular cardinality.

(4) We can strengthen the definition of nice indexed set (Def. 5.2) as in [\$6] without changing the conclusions.

(5) We can generalize 6.4–6.8 to $\psi \in L_{\omega_{\text{max}}} (Q)$.

(6) We can define niceness for all reasonable logics.

Note added October 6, 1974.

(1) A Variant of 2.3 was proved, later and independently by M. Makkai, An addmissible generalization of a theorem on countable Σ_1 sets of reals with applications, to appear.

(2) Recently, the author has proven that e.g., if $\psi \in L_{\omega_{1,\omega}}$ is categorical in \mathbf{N}_n for $0 \le n \le \omega$ then ψ is categorical in every $\lambda > \aleph_0$, assuming $V = L$.

REFERENCES

1. Baumgartner, *On* N_1 -dense sets of reals, Fund. Math.

2. G. Fodor, *Eine Bemerkung zur Theorie der regressiven Funktionen,* Acto. Sci. Math. 17 (1965), 139-142.

3. H. Friedman, *Ninety-[ourproblems in mathematical logic,* to appear in J. Symbolic Logic.

4. R. B. Jensen, *The fine structure of the constractible hierarchy,* Ann. Math. Logic 4 (1972), 224-308.

5. H.J. Keisler, *Model theory for infinitary logic,* North Holland Publ. Co., Amsterdam, 1971.

6. H. J. Keisler, *On the quantifier "there exist uncountably many* x", Ann. Math. Logic 1 (1970), i-91.

7. J. Knight, *Minimal sets in infinitary logic,* preprint.

8. L. Marcus, *A prime minimal model with an infinite set of indiscernibles,* Israel J. Math. 11 (1972), 180-183.

9. M. D. Morley, *Categoricity in power,* Trans. Amer. Math. Soc. 114 (1965), 514-538.

10. M. D. Morley, *The number of countable models,* J. Symbolic Logic 35 (1970), 14-18.

11. S. Shelah, *Finite diagrams stable in power,* Ann. Math. Logic 2 (1970), 69-118.

12. S. Shelah, *The number of non-isomorphic models of an unstable first-order theory,* Israel J. Math. 9 (1971), 473-487.

13. S. Shelah, *Stability, the f.c.p. and superstability; model theoretic properties of formulas in first order theory,* Ann. Math. Logic, 3 (1971), 271-362.

14. S. Shelah, *Categoricity of uncountable theories,* Proc. of Symp. in honor of Tarski's Seventieth birthday, Berkeley 1972; Proc. of Symp. in Pure Math., Amer. Math. Soc., Providence, R.I., 1974. pp. 187-204.

15. S. Shelah, *Various results in Math. Logic,* Notices Amer. Math. Soc. 22 (1974).

16. S. Shelah, *Generalized quantifiers and compact logic,* Trans. Amer. Math. Soc., to appear.

17. R. Solovay, *Real-valued measurable cardinals in axiomatic set theory,* Proc. Syrup. Pure Math. XIII Part I, Amer. Math. Soc. Providence, R.I., 1971, pp. 397-428.

INSTITUTE OF MATHEMATICS

HEBREW UNIVERSITY OF JERUSALEM JERUSALEM, ISRAEL